1	(i)	$\left[\frac{dy}{dx}\right] = 4 \times 2 + 3 \text{ or } 11 \text{ isw}$	M1*		
		9 = their $(4 \times 2 + 3) \times 2 + c$	M1dep*	or $y - 9 =$ their $(4 \times 2 + 3) \times (x - 2)$	
		y = 11x - 13 or $y = 11x + c$ and $c = -13stated$	A1	or $y - 9 = 11(x - 2)$ isw	
		isw	[3]		
1	(ii)	$\frac{4x^2}{2} + 3x$	M1*		
		$[y=] 2x^2 + 3x + c$	A1	must see "2" and " + c "; may be earned later eg after attempt to find c	
		$9 = 2 \times 2^2 + 3 \times 2 + c$	M1dep*	must include constant, which may be implied by answer	
		$y = 2x^2 + 3x - 5$ cao	A1	allow first 4 marks for $y = 2x^2 + 3x + c$ and $c = -5$ stated	
		(1, 0) and (-2.5, 0) oe cao	B1	or for $x = 1, y = 0$ and $x = -2.5, y = 0$	B0 for just stating $x = 1$ and $x = -2.5$
		$x = -\frac{3}{4}$ $y = -\frac{49}{8}$	B1 B1	6.125 or - 61/	
		8	[7]	-0.123 OF - 078	

1	(iii)	substitution to obtain $[y =] f(2x)$ in polynomial form	M1	f(x) must be the quadratic in x with linear and constant term obtained in part (ii), may be in factorised form	or their $x = 1 \rightarrow$ their 0.5 and their $x = -2.5 \rightarrow$ their $x = -1.25$
		y = (2x - 1)(4x + 5) or y = 8x ² + 6x - 5 or y = 2 $\left(2x + \frac{3}{4}\right)^2 - \frac{49}{8}$	A1FT	must be simplified to one of these forms, FT their quadratic in x with linear and constant term obtained in part (ii)	hence $y = (2x - 1)(4x + 5)$ FT their x-intercepts from their quadratic in x with linear and constant term obtained in part (ii)
		$\left(-\frac{3}{8},-\frac{49}{8}\right)$ oe	B1 [3]	or FT their (both non-zero) co-ordinates for minimum point or their quadratic in x with linear and constant term obtained in part (ii)	

$$\begin{bmatrix} \frac{dy}{dx} = \end{bmatrix} 32x^{3} \text{ c.a.o.} & \mathbf{M1} \\ \text{substitution of } x = \frac{1}{2} \text{ in their } \frac{dy}{dx} & \mathbf{M1} \\ \text{grad normal} = \frac{-1}{their4} & \mathbf{M1} \\ \text{when } x = \frac{1}{2}, y = 4\frac{1}{2} \text{ o.e.} & \mathbf{B1} \\ y - 4\frac{1}{2} = -\frac{1}{4}(x - \frac{1}{2}) \text{ i.s.w} & \mathbf{A1} \end{bmatrix} y = -\frac{1}{4}x + 4\frac{5}{8} \text{ o.e.}$$

$$\max = \frac{1}{2} + \frac{1}{4}x + 4\frac{5}{8} \text{ o.e.}$$

3	(i)	$\frac{dy}{dx} = 4x^3$	M1	
		when $x = 2$, $\frac{dy}{dx} = 32$ s.o.i.	A1	i.s.w.
		when $x = 2$, $y = 16$ s.o.i.	B1	
		y = 32x - 48 c.a.o.	A1	
3	(ii)	34.481	2	M1 for $\frac{2.1^4 - 2^4}{0.1}$
3	(iii)	$16 + 32h + 24h^2 + 8h^3 + h^4$ c.a.o.	3	B2 for 4 terms correct
	(A)			B1 for 3 terms correct
3	(iii)	$32 + 24h + 8h^2 + h^3$ or ft	2	B1 if one error
	<u>(B)</u>			
3	(iii)	as $h \rightarrow 0$, result \rightarrow their 32 from	1	
	(C)	(Ш) (В)		
		gradient of tangent is limit of gradient of chord	1	

				-	
4	i	6.1	2	M1 for $\frac{(\overline{3.1^2 - 7}) - (3^2 - 7)}{3.1 - 3}$ o.e.	2
	ii	$\frac{((3+h)^2-7)-(3^2-7)}{h}$	M1	s.o.i.	
		numerator = $6h + h^2$ 6 + h	M1 A1		3
	iii	as <i>h</i> tends to 0, grad. tends to 6 o.e. f.t.from "6"+h	M1 A1		2
	iv	y - 2 = "6" (x - 3) o.e. y = 6x - 16	M1 A1	6 may be obtained from	2
	v	At P, $x = 16/6$ o.e. or ft At Q, $x = \sqrt{7}$ 0.021 cao	M1 M1 A1		3

5	(i) ad of chord = $(2^{3.1} - 2^3)/0.1$ o.e.	M1 A1		
	 = 5.74 c.a.o. (ii) rrect use of A and C where for C, 2.9 < x < 3.1 answer in range (5.36, 5.74) 	M1 A1	or chord with ends $x = 3 \pm h$, where $0 < h \le 0.1$ s.c.1 for consistent use of reciprocal of gradient formula in parts (i) and (ii)	4