

$2\left[\frac{d y}{d x}=\right] 32 x^{3}$ c.a.o.
substitution of $x=1 / 2$ in their $\frac{d y}{d x}$
grad normal $=\frac{-1}{\text { their } 4}$
when $x=1 / 2, y=41 / 2$ o.e.
$y-4 \frac{1}{2}=-\frac{1}{4}\left(x-\frac{1}{2}\right)$ i.s. w

M1

M1 [=4]
M1

B1
A1
must see $k x^{3}$
their 4 must be obtained by calculus

3	(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}$ when $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=32$ s.o.i. when $x=2, y=16$ s.o.i. $y=32 x-48$ c.a.o.	A1	B1 i.s.w.
$\mathbf{3}$	(ii)	34.481	A1	
$\mathbf{3}$	(iii) (A)	$16+32 h+24 h^{2}+8 h^{3}+h^{4}$ c.a.o.	$\mathbf{3}$	B2 for 4 terms correct B1 for 3 terms correct
$\mathbf{3}$	(iii) (B)	$32+24 h+8 h^{2}+h^{3}$ or ft	$\mathbf{2}$	B1 if one error
$\mathbf{3}$	(iii) (C)	as $h \rightarrow 0$, result \rightarrow their 32 from (iii) (B)	$\mathbf{1}$	

5	$\begin{aligned} & \text { (i) ad of chord }=\left(2^{3.1}-2^{3}\right) / 0.1 \\ & \text { o.e. } \\ & =5.74 \text { c.a.o. } \end{aligned}$ (ii) rrect use of A and C where for C, $2.9<x<3.1$ answer in range $(5.36,5.74)$	M1 A1 M1 A1	or chord with ends $x=3 \pm h$, where $0<h \leq 0.1$ s.c. 1 for consistent use of reciprocal of gradient formula in parts (i) and (ii)	

